
______________________________________________________________________________ 
Model-Based Diagnostics for Air-Handling Units – Salsbury and Diamond                      1 

ModelModel--Based Diagnostics for Air Handling UnitsBased Diagnostics for Air Handling Units  
 

Tim Salsbury and Rick Diamond 
Lawrence Berkeley National Laboratory 

Berkeley, CA 94720 
 

Introduction 
In most large air-conditioned buildings, air-handling units account for a significant portion of 
total building energy consumption and have a major impact on comfort conditions and 
maintenance costs.  The devices within an air-handling unit either use energy directly in the case 
of fans, or indirectly, in the case of heat exchangers, which impose loads on the chiller and boiler 
plant.  Air-handling units can comprise a myriad of subsystems (fans, heat exchangers, 
humidifiers, mixing dampers, heat recovery units, filters, control valves, actuators, sensors, etc.) 
all of which are prone to developing faults.  Sensor information from the various air-handling 
unit subsystems is typically available on a single network through an energy management and 
control system (EMCS).  In practice, little analysis of the information on the EMCS network is 
carried out and the full potential of the hardware is therefore not realized. Significant potential 
exists for making better use of this information for data analysis and fault diagnosis in order to 
improve operations, save energy, and assure comfort conditions. 
 
In order to carry out fault diagnostics, some representation (or reference) of correct or normal 
behavior has to be developed.  This reference is the most important part of a fault diagnosis 
system.  The consequences of a poorly defined reference are a failure to detect faults or the 
generation of false alarms.  A model-based approach to diagnostics involves using a 
mathematical description of the system as a reference of correct behavior.  A diagnostics scheme 
can use various types of models, such as first-principles models, neural networks, fuzzy rules, 
characteristic curves, etc.  This paper advocates the use of first-principle models, which are 
developed from equations such as thermodynamic relationships and include parameters related to 
physical attributes of the real system.  The paper describes how these types of models can be 
used as part of computer-based technologies at various stages in the life cycle of a building. 
 

Fault Diagnostics Based on Models 
Models encapsulate information about a considered system in the form of equations.  The role of 
a model in diagnostic schemes is generally to act as a reference of expected or correct operation. 
Figure 1 illustrates the concept of using a model as a performance reference.  In the figure, the 
model predicts performance of the real system based on monitored variables associated with its 
operation.  In many diagnostic schemes, differences between model predictions and monitored 
system variables (known as residuals or “innovations”) form the basis of the fault diagnosis.  
Faults can be detected by monitoring the magnitude of the residuals and comparing them to 
predetermined thresholds.  A more detailed analysis of the residuals and associated operating 
point information can be used to produce a diagnosis of the type and magnitude of a particular 
fault.  An variant approach is to use monitored data to estimate model parameters.  Faults are 
then detected and diagnosed by evaluating changes (residuals) in model parameters from their 
correct operation values. 
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Figure 1: Concept of a model-based fault diagnostic scheme. 

Several researchers (e.g., Gertler, 1998; Glass et al., 1994; Isermann, 1995; Patton et al., 1995) 
have proposed fault diagnostic schemes based on the use of models.  The main trade-off with 
model-based schemes is configuration effort versus model accuracy.  Generally, the greater the 
potential accuracy of the models, the greater the effort required to configure the models for use. 
 
Advantages of using First-Principles Models 
First-principles models (also referred to as analytical, white-box or physical models) are 
quantitative mathematical models constructed using equations derived from a theoretical analysis 
of the physical processes occurring in a system (e.g., heat and mass balances).  This analysis 
determines the mathematical structure of the models and defines parameters that relate to 
measurable system properties.  In contrast to black-box models (also known as empirical 
models), first-principles models make as much use as possible of prior knowledge about the 
system.  Since the parameters of first-principles models relate to system properties, their values 
can, in principle, be measured directly from the real system, or obtained from information 
typically available in a life cycle of a building.  
 

Supporting Infrastructures for Model-Based Applications 
One of the limiting factors affecting adoption of diagnostic technology is the difficulty in 
configuring the methods for each individual application.  Many schemes require an experienced 
researcher or a person with knowledge of the methods to carry out the tuning and calibration 
required for each real application.  A large number of model-based methods, particular those 
based on black-box models, also require some form of training period in order to identify the 
reference model.  These factors all add cost to the diagnostic system and limit its practical 
viability.  The use of first-principles models alleviates some of the configuration effort since 
model parameters relate to real (and measurable) physical attributes.  In principle, the 
information needed to identify the parameter values is available in the life cycle of a building.  
 
Although the parameters of first-principles models are more easily obtainable than in other 
models, in most situations, limited time and resources are available to manually gather and input 
the parameter values. There is currently a large international effort underway in the International 
Alliance for Interoperability (IAI) to develop standard data models for architectural, engineering, 
and construction processes.  Technologies based on the use of first-principles models are a 
potential beneficiary of such initiatives.  Adoption of a standard means by which to handle data 
elements associated with building systems opens the way for automatic configuration of model-
based technologies from other software programs used in the building life cycle.  Potential 
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sources of information include CAD, product databases, EMCS software, etc.  Figure 2 
illustrates the concept of a shared data model and shows how this would support model-based 
application software, such as diagnostics.  A standard data model would act as a repository of 
information, which evolves during the building life cycle to reflect the actual building and its 
systems.  Model-based applications could then utilize this repository as a basis for obtaining  
configuration parameters suitable for application at various life cycle processes. 

Data
Model

Product Databases

Design/sizing

Installation

Commissioning

Operations

Maintenance

Retrofit

Building Life CycleBuilding Life Cycle

Model-Based
Applications

Configuration
information

 

Figure 2: Concept of a standard data model in the building life cycle. 

Table 1 lists examples of the kind of information required to configure a diagnostic tool 
developed around the use of first-principles models of an air-handling unit and its constituent 
subsystems.  The table indicates the source of the information in terms of a life cycle process.  
Most of the data elements are defined at the design process, but are validated or updated at later 
life cycle processes. 

Table 1: Example data requirements for air-handling unit models 

DATA ELEMENT UNITS SOURCE IN LIFE CYCLE 
HEATING/COOLING COIL SUBSYSTEMS 

Maximum heat transfer rate kW Design 
Minimum cold fluid inlet air temperature  Design 
Maximum cold fluid mass flow rate kgs-1 Design/(commissioning) 
Maximum hot fluid inlet temperature ºC Design 
Maximum hot fluid mass flow rate kgs-1 Design/(commissioning) 
Hot and cold fluid types Enumeration 

(water, steam, etc) 
Design 

Flow arrangement Enumeration (cross, 
parallel, counter) 

Design 

Valve authority - Commissioning 
Control valve type Enumeration  

Exponential, Linear) 
Design/commissioning 

Inlet dry-bulb temperature ºC Operations (EMCS) 
Inlet relative humidity % Operations (EMCS) 
Air mass flow rate kgs-1 Operations (EMCS) 
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FAN SUBSYSTEM (CONTROLLED TO STATIC PRESSURE SETPOINT) 
Motor efficiency at maximum load % Design (product data) 
Outlet cross-sectional area m2 Design (product data) 
Resistance between static pressure sensor and 
ambient 

kg-1m-1 Design/commissioning 

Inlet air temperature ºC Operations (EMCS) 
Electric power input kW Operations (EMCS) 
Static pressure setpoint kPa Operations 

(EMCS)/commissioning 
MIXING BOX SUBSYSTEM 

Authority - Design/commissioning 
Minimum outside air requirement % Design/commissioning 
Return air temperature ºC Operations (EMCS) 
Outside air temperature ºC Operations (EMCS) 
Return air relative humidity % Operations (EMCS) 
Outside air relative humidity % Operations (EMCS) 

  
Example Air-Handling Unit 

LBNL researchers have been evaluating the energy usage in the Phillip Burton federal building 
in San Francisco between 1996 and 1999.  Part of the analysis showed the potential for energy 
savings from improved control and monitoring of the air-handling units.  A simulation of one of 
the main air-handlers in the building is used here to demonstrate the potential of model-based 
diagnostics.  The simulated system was developed in the MATLAB environment using models 
similar to those found in the computer simulation program HVACSIM+ (Clark, 1985). 
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Figure 3: Dual-duct air-handling unit. 

Figure 3 depicts the air-handling unit, which is a dual-duct system.  In the unit, air dampers 
controlled by an economizer, mix return-air from the building with outside-air in order to 
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maintain a mixed-air temperature setpoint.  A large supply fan blows the mixed-air through both 
the hot- and cold-deck ducts.  The supply fan controller maintains the average of the hot and cold 
ducts at a fixed static pressure setpoint.  The supply fan speed varies in order to counteract 
changes in duct system resistance brought about by dampers opening and closing in VAV 
terminal units.  Two fans installed in the return duct have their speeds tracked to the speed of the 
supply fan.  The hot and cold ducts each house a heat exchanger with controllers configured to 
maintain setpoints by modulating control valves.  The hot-duct heat exchanger has a two-port 
valve and the cold-duct a three-port valve.  The air-handling unit has the capacity to deliver 
74kg/s of air and provide 850kW of heating and 1260kW of cooling. 
 

Use of Models in the Design Process 
The design process is where much of the information needed to configure first-principles models 
originates.  Moreover, first-principles models are the main components of simulation programs, 
which have now reached a level of maturity where their use in the design process of a building is 
a viable and increasingly widespread practice.  Simulation programs are generally used for 
energy analysis once the final system design has been made.  However, simulation is now being 
used more as an integral part of the design process in order to optimize the design according to 
given criteria such as energy use, capital cost, control performance, etc.  Figure 4 illustrates the 
concept of using a simulation for design optimization in this way. 
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Figure 4: Simulation-assisted design concept. 

Improved data handling and more powerful computing environments create the opportunity to 
extend the use of simulation and model-based concepts into life cycle processes beyond design.  
In particular, model configuration information gathered during the design process may be used in 
model-based technologies in life cycle processes beyond design as a way to confirm that 
operation conforms to design intent. 
 

Model-Based Approach to Automatic Commissioning 
The performance of many HVAC systems is limited more by poor installation, commissioning, 
and maintenance than by poor design (Liu, 1997; Piette, 1996; Schexnayder et al., 1997).  
Commissioning is often carried out poorly in practice for the following reasons: 
 

• Limited time and resources available to undertake rigorous testing 
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• Shortage of skilled personnel 
• Difficulty in defining performance criteria for the commissioning process 

 
An important part of the commissioning process involves carrying out a proof of operation.  In 
large modern buildings, the energy management and control system (EMCS) is used to exercise 
the various systems in the building to verify electric and hydraulic connectivity, correct 
balancing, and proper installation.  The potential exists to automate this part of the 
commissioning process to address the problems listed above.  The benefits of an automated 
approach to commissioning are: 
 

• Allows testing on systems in parallel, thereby reducing overall testing time 
• Automates the labor-intensive aspects of commissioning, thereby freeing engineers to 

deal with problems identified by the tests  
• Facilitates conformance testing and use of pre-determined test standards and performance 

targets 
 
Automated commissioning involves analyzing system performance in order to detect and 
diagnose problems (faults) that would affect the operation of the system during normal use.  
LBNL researchers have developed an automated commissioning tool based on simple models.  
The tool is simple to configure and has the potential to detect system problems during the 
commissioning phase that would severely restrict performance during normal operation.  
Benefits are energy savings, improved occupant comfort and the avoidance of more costly 
maintenance during operations. 
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Figure 5: Model-based approach to automated commissioning. 

Figure 5 illustrates the automated commissioning scheme, which tests systems while under 
closed-loop control.  The idea is to test both the control performance and basic operation of the 
system simultaneously in order to reduce testing time.  Operation of a particular system is tested 
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at three operating points: high capacity, low capacity, and mid capacity.  The high capacity point 
checks whether the system is capable of meeting design loads, the low capacity point checks for 
the close-off ability of valves and dampers, and the mid point checks for correct balancing.  The 
model takes an operating point as input and makes a prediction of the setpoint expected to drive 
the system to that operating point.  By configuring the model to represent correct operation, a 
deviation in the actual operating point of the system from the desired point represents an 
indication of faulty behavior.   
 
Figure 6 shows results from carrying out a sequence of tests on the dual-duct air-handling unit 
described earlier.  The top graph in the figure shows the three controlled temperatures in the air-
handler: mixing plenum temperature, hot duct temperature, and cold duct temperature.  The 
temperatures are shown as solid lines, and their setpoints as dashed lines.  The lower graph 
shows the control signals to each of the three subsystems: mixing dampers, heating coil, and 
cooling coil.  The test sequence for the dual-duct air-handling unit comprised six individual tests.  
Table 2 shows the desired operating points (control signals) for each of these tests.  Note that the 
three operating point tests are carried out on the three different air-handling unit subsystems in 
only six steps by combining some of the tests.  In test 1, for example, all subsystems are tested at 
their close-off point simultaneously. 

Table 2: Expected control signals for the demanded setpoints.  Note that indices in bold 
indicate figures pertinent for a particular test. 

TEST 

NUMBER 
EXPECTED CONTROL SIGNAL 

(%) 
 MIXING COOLING HEATING 
1 100 0 0 
2 100 0 50 
3 100  0 100 
4 50 0 0 
5 0 50 0 
6 0 100 0 

 
Each change in setpoint is held for 20 minutes with the last 5 minutes of the period used to 
calculate two performance indices: the mean setpoint tracking error, and the average control 
signal.  These indices are calculated over the last 5-minute period of each test since, ideally, the 
system is expected to be in steady state during this time.  Diagnostics are generated by 
comparing the two indices calculated from each test with expected values.  Following the test 
sequence, a table of results is generated of the form shown in Table 3.  A diagnosis of the system 
performance is made by comparing the table of measured values with the expected values (Table 
2) for a correctly operating system.  Note that the ideal values for the mean absolute setpoint 
errors are all zero.  Differences in the test values from their ideal values are due to inaccuracies 
in the models and other uncertainties in the process as a whole.  In order to automate fully the 
diagnosis, thresholds need to be defined for the test indices.  Since the types of problems at 
commissioning time typically lead to large disruptions in performance (e.g., reverse acting 
actuators, disconnected valves, etc.), reasonable estimates for the thresholds can be made from 
expert knowledge.  This approach has been investigated in related work (Haves et al., 1996) 
where fuzzy inferencing was used to assign ranges of confidences for index values. 
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Figure 6: Results from commissioning tests on a correctly operating system. 

Table 3: Results of tests on correctly operating system.  Note that indices in bold 
indicate figures pertinent for a particular test. 

TEST 

NUMBER 
AVERAGE CONTROL SIGNAL 

(%) 
MEAN ABSOLUTE ERROR  

(K) 
 MIXING COOLING HEATING MIXING COOLING HEATING 
1 99 7 0 0.7    0.2 0.3 
2 99 2 55 0.6    0.1 0.1 
3 98    2 100 0.5    0.2 1.3 
4 52 0 0 0.1    0.7 4.0 
5 2 38 7 0.4    0.0 0.1 
6 2 92 5 0.3 0.0 0.1 

 
Model-Based Diagnostics during Operations 

Heating, ventilating, and air-conditioning (HVAC) systems are typically controlled using 
proportional plus integral (and sometimes plus derivative) PI(D) control law.  In practice, HVAC 
systems exhibit non-linear operating characteristics.  Because PI(D) control law is best-suited to 
linear systems, the performance of an HVAC controller can vary when operating conditions 
change. A controller tuned for one set of environmental conditions may become sluggish or 
oscillatory at a different set of conditions (Salsbury, 1998).  Poor control performance can lead to 
occupant discomfort in a building, greater energy consumption, and increased wear on controlled 
elements, such as actuators, valves, and dampers. 
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In a conventional PI(D) feedback loop, the controller does not contain much information about 
the process it is controlling. Faults that lead to performance deterioration or a change in system 
behavior are often masked by the feedback loop.  One way to address the problem of inconsistent 
control performance and be able to detect faults in the controlled process is to use a model of the 
correctly operating system as part of the control scheme.  The model is combined with the 
feedback loop to reduce the effects of plant non-linearity on control performance, while the 
feedback loop compensates for modeling errors and improves the response time.  If the system 
under control deviates from correct operation, the feedback controller compensates and 
effectively provides a measure of the residual between model and system performance. 
 
Figure 7 shows a schematic diagram of the combined fault detection and control scheme.  In the 
scheme, the control signal issued by a conventional HVAC controller (uPI) is supplemented by a 
control signal generated by the model (uFF).  The model is in inverse form and produces a control 
action appropriate for the current setpoint and measured disturbances.  Since the model is 
configured to represent the correctly operating system, the output from the conventional (in this 
case PI) controller (uPI) is a measure of the residual between predicted and actual performance.  
This residual forms the basis of fault detection whereby the scheme generates an alarm when the 
magnitude of the residual exceeds a threshold.  
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Figure 7: The control and fault detection scheme. 

The potential of using the control scheme for fault detection is illustrated via example results 
obtained from tests on a simulation of the dual-duct system described earlier.  The scheme was 
used to detect a stuck damper in the mixing box, which is a common fault in HVAC systems.  
This fault can be due to various causes, such as a failed actuator, damper obstruction, de-coupled 
linkage, etc.  The fault is difficult to detect in practice as it does not cause failure of the mixing 
process but instead alters its characteristics and restricts the operating range.   
 
Twelve hours of test data, sampled at 5-second intervals are used to test the control scheme.  The 
test data contain real measurements of ambient and return air temperatures from a real building.  
Airflow rate is artificially varied in a sequence of arbitrary steps and ramps.  The setpoints for 
each of the three subsystems are also varied artificially in order to facilitate a rigorous 
assessment of the controllers.  Figure 8 shows the control performance when the re-circulation 
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damper is stuck at 50% open.  The upper graph shows the three controlled variables and 
setpoints.  The middle graph shows the ambient and return air temperatures and the air flow rate 
(right axis scale), and the lower graph shows the control signals to each of the subsystems.  The 
fault is masked for the majority of the test data with the fault condition only affecting control 
performance in the middle of the data when the controller demands 100% outside air.  
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Figure 8: Control behavior when the return air damper is stuck at 50%. 

Figure 9 shows the fault indicator variables for the stuck damper condition.  The top graph shows 
the control signals generated by the three feedback loops in the air-handler (i.e., the residuals 
between model predictions and the observed behavior).  If the models used in the controller were 
perfect representations of the system under control, these control signals would asymptotically 
approach zero following each disturbance.  Figure 9 shows that there are modeling errors in each 
of the controller models.  The errors vary during the data due to transient effects and because the 
models approximate the system better in certain parts of the operating range than in others. A 
fault detection threshold was determined based on model accuracy by testing the controller with 
the correctly operating system at various operating points.  The feedback control action to the 
mixing box increases during the periods when the dampers are supposed to be providing 100% 
outside air.  Unwanted re-circulation through the mixing box reduces its operating range so that 
setpoints close to the ambient air temperature become unattainable.  The fault is less apparent in 
the parts of the range where setpoints are closer to the return air temperatures.  The fault proves 
difficult to detect and the threshold is only exceeded for a short time around nine hours into the 
test data.  However, the period over which the feedback action remains above the threshold is 
sufficient to trigger an alarm for the mixing box.  Note that 30 minutes is set as the time limit for 
a threshold transgression in order to trigger an alarm. 
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Figure 9: Fault indicator variables - return air damper stuck at 50%. 

The concept of using a model for the combined purpose of control and fault detection is a logical 
integration of technologies as control problems are prevalent in HVAC systems and frequently 
lead to failures of controlled elements.  In addition, since the described approach represents an 
“add-on” to current control technology (such as PI control), implementation in existing devices is 
viable.  LBNL researchers have also developed diagnostic schemes for operations based on 
models acting in isolation to the control (Salsbury et al., 1995; Haves et al., 1996).  In these 
approaches, fault detection is performed by non-intrusively comparing model predictions with 
monitored data from the considered system. 
 

Conclusions 
This paper has described how first-principles models can be used for three applications in the life 
cycle of a building: simulation-assisted design, automated commissioning, and operational 
diagnostics.  Results were presented from tests carried out on an example air-handling unit to 
illustrate the potential of model-based technologies at the commissioning and operations stages.  
 
Maintaining models as the central theme of applications across the life cycle of a building 
reduces the potential for information loss by allowing performance information to perpetuate and 
evolve through life cycle processes.  Standardized data models facilitate easier data exchange 
between software programs and increase the practicability of model-based technology. 
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